Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

## Xiao-Chen Yan, Hai-Bo Wang* and Zhi-Qian Liu

Department of Applied Chemistry, College of Science, Nanjing University of Technolgy, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China

Correspondence e-mail:
wanghaibo@njut.edu.cn

## Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
$R$ factor $=0.067$
$w R$ factor $=0.172$
Data-to-parameter ratio $=14.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
## 1-Acetyl-3,3-bis[3-(2-methylphenyl)-1,2,4-oxadiazol-5-yl]-1H-indolin-2(3H)-one

In the title compound, $\mathrm{C}_{30} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}_{4}$, the indanone ring system is planar. The dihedral angle between the benzene and attached oxadiazole rings are different [9.3 (2) and $43.9(1)^{\circ}$ ] in the two phenyloxadiazole fragments. In the crystal packing, intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen-bond interactions are observed.

## Comment

Some oxindole derivatives have intrinsic analgesic (Daisley \& Walker, 1979), anti-inflammatory (Kadin et al., 1986), antiviral (Singh \& Krishna, 1989), cardiotonic (Andreani et al., 1988), anticonvulsant (Valenta et al., 1990), anxiolytic (Sarges et al., 1989) and inotropic (Ogawa et al., 1988) properties. We report here the crystal structure of the title compound, (I).


The molecular structure of (I) is shown in Fig. 1 and selected bond lengths and angles are given in Table 1. The indanone ring system is planar and the acetyl group at N 5 is twisted by $11.8(2)^{\circ}$. The dihedral angle between the O1/N1/ $\mathrm{N} 2 / \mathrm{C} 8 / \mathrm{C} 9$ and $\mathrm{C} 1-\mathrm{C} 6$ planes is $9.3(2)^{\circ}$ and that between the O4/N3/N4/C22/C23 and C25-C30 planes is $43.9(1)^{\circ}$. Intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are observed in the molecular structure. The crystal structure is stabilized by intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds (Table 2).

## Experimental

$N$-Acetyl-2-indolinone ( 20 mmol ) was dissolved in acetone ( 40 ml ) and potassium carbonate ( 60 mmol ) was added in one portion. 5-Chloromethyl-3-(2-methylphenyl)-1,2,4-oxadiazole ( 40 mmol ) in acetone ( 40 ml ) was added to this mixture. The resulting mixture was refluxed for 72 h . After cooling and filtering, crude compound (I) was obtained. Pure compound (I) was obtained by crystallizing from a mixture of ethyl acetate ( 4 ml ) and petroleum ether ( 8 ml ). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 8.20-8.23(\mathrm{~m}, 1 \mathrm{H})$, 7.74-7.77 ( $\mathrm{m}, 2 \mathrm{H}$ ), 7.33-7.38 ( $\mathrm{m}, 2 \mathrm{H}$ ), 7.23-7.30 ( $s, 5 \mathrm{H}$ ), 7.09-7.14 ( m , 2 H ), 3.69-3.84 ( $s, 4 \mathrm{H}$ ), 2.75 ( $s, 3 \mathrm{H}), 2.44$ ( $s, 6 \mathrm{H})$.

## Crystal data

$\mathrm{C}_{30} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}_{4}$
$M_{r}=519.55$
Monoclinic, $P 2_{1} / c$
$a=11.680$ (2) A
$b=12.234$ (2) A
$c=18.396$ (4) $\AA$
$\beta=93.85$ (3) ${ }^{\circ}$
$V=2622.7(8) \AA^{3}$
$Z=4$

## Data collection

Enraf-Nonius CAD-4
diffractometer
$\omega / 2 \theta$ scans
Absorption correction: $\psi$ scan
(North et al., 1968)
$T_{\text {min }}=0.965, T_{\text {max }}=0.982$
5405 measured reflections 5144 independent reflections 2860 reflections with $I>2 \sigma(I)$

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.067$
$w R\left(F^{2}\right)=0.172$
$S=1.06$
5144 reflections
356 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.07 P)^{2}\right. \\
& +0.4 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.010 \\
& \Delta \rho_{\max }=0.24 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.21 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.0073 \text { (10) }
\end{aligned}
$$

Table 1
Selected geometric parameters ( $\left(\AA^{\circ}{ }^{\circ}\right.$ ).

| O1-C9 | $1.339(3)$ | $\mathrm{N} 2-\mathrm{C} 8$ | $1.391(3)$ |
| :--- | :--- | :--- | :--- |
| O1-N1 | $1.421(3)$ | $\mathrm{N} 3-\mathrm{C} 22$ | $1.281(3)$ |
| O2-C12 | $1.201(3)$ | $\mathrm{N} 3-\mathrm{C} 23$ | $1.384(3)$ |
| O3-C20 | $1.202(4)$ | $\mathrm{N} 4-\mathrm{C} 23$ | $1.285(3)$ |
| $\mathrm{O} 4-\mathrm{C} 22$ | $1.328(3)$ | $\mathrm{N} 5-\mathrm{C} 22$ | $1.402(3)$ |
| $\mathrm{O} 4-\mathrm{N} 4$ | $1.422(3)$ | $\mathrm{N} 5-\mathrm{C} 20$ | $1.402(4)$ |
| $\mathrm{N} 1-\mathrm{C} 8$ | $1.284(4)$ | $\mathrm{N} 5-\mathrm{C} 13$ | $1.423(4)$ |
| N2-C9 | $1.272(3)$ |  |  |
| $\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11$ | $113.6(2)$ | $\mathrm{N} 5-\mathrm{C} 20-\mathrm{C} 19$ | $118.7(3)$ |
| O3-C20-N5 | $119.0(4)$ | $\mathrm{C} 22-\mathrm{C} 21-\mathrm{C} 11$ | $112.2(2)$ |
| $\mathrm{O} 3-\mathrm{C} 20-\mathrm{C} 19$ | $122.3(3)$ |  |  |

Table 2
Hydrogen-bond geometry ( $\mathrm{A},{ }^{\circ}$ ).

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{C} 3-\mathrm{H} 3 B \cdots \mathrm{~N} 2$ | 0.93 | 2.45 | $2.822(4)$ | 104 |
| $\mathrm{C} 14-\mathrm{H} 14 A \cdots \mathrm{O} 3$ | 0.93 | 2.32 | $2.843(5)$ | 115 |
| $\mathrm{C}^{\mathrm{i}} 6-\mathrm{H} 16 A \cdots \mathrm{~N}^{\mathrm{i}}$ | 0.93 | 2.62 | $3.395(6)$ | 142 |
| ${\mathrm{C} 24-\mathrm{H} 24 B \cdots \mathrm{O}^{1 i}}^{2}$ | 0.96 | 2.59 | $3.509(5)$ | 160 |

Symmetry codes: (i) $-x+2, y+\frac{1}{2},-z+\frac{1}{2}$; (ii) $-x+1,-y+2,-z$.


Figure 1
The structure of (I), showing 30\% probability displacement ellipsoids.

All H atoms were positioned geometrically at distances of $0.93-$ $0.97 \AA$, and included in the refinement in the riding-model approximation with $U_{\text {iso }}(\mathrm{H})=1.2$ or $1.5 U_{\text {eq }}$ of the carrier atom.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Siemens, 1996); software used to prepare material for publication: SHELXL97.

## References

Andreani, A. \& Rambaldi, M. (1988). J. Heterocycl. Chem. 25, 15191523.

Daisley, R. W. \& Walker, J. (1979). Eur. J. Med. Chem. Chim. Ther. 14, 4752.

Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Kadin, S. B. (1986). Eur. Patent No. EP 175551.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Ogawa, H., Tamada, S., Fujioka, T., Teramoto, S., Kondo, K., Yamashita, S., Yabuuchi, Y., Tominaga, M. \& Nakagawa, K. (1988). Chem. Pharm. Bull. 36, 2253-2258.
Sarges, R., Howard, H. R., Koe, B. K. \& Weissman, A. (1989). J. Med. Chem. 32, 437-444.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Siemens (1996). SHELXTL. Version 5.06. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Singh, S. P. \& Krishna, J. (1989). Zentralbl. Mikrobiol. 144, 105-109.
Valenta, V., Holubek, J., Svatek, E., Valchar, M., Krejci, I. \& Protiva, M. (1990). Collect. Czech. Chem. Commun. 55, 2756-2764.


[^0]:    (C) 2006 International Union of Crystallography All rights reserved

